Rabu, 08 Februari 2017

MAGNETIC DISK

PENGERTIAN
MAGNETIC DISK
Saat ini teknologi infomarmasi telah merubah mainset dari peradaban manusia itu sendiri. Mulai dari aspek financial hingga politik. Sebut saja e-commerce yang saat ini sudah semakin membudaya pada masyarakat kita hingga fenomena facebook saat pemilihan presiden amerika dan indonesia kemaren, beberapa fakta tersebut semakin menyadarkan kita bahwa saat ini teknologi computer khususnya internet telah masuk pada kehidupan kita. Pada kesempatan kali ini saya ingin membahas tentang bagaimana sebuah data itu tersimpan pada storage dan juga cara kerja dari storage itu sendiri. Dalam konteks ini yang ingin saya bahas adalah konteks disk magnetic dan menyimpan file dalam sebuah storage online.
Pada dasarnya arsitektur memory pada computer dapat digambarkan seperti ini. Dimana pada puncak arsitektur terdapat semacam register cpu yang bisa diakses oleh cpu dengan kecepatan penuh, sementara dibawah dari memory register terdapat memory cache yang bisa diakses dengan kecepatan hingga ghz. Dibawahnya terdapat memory utama dengan ukuran ghz dan untuk skala system parallel sudah meningkat ke ukuran thz. dibawahnya lagi terdapat disk magnetic yang hingga saat ini menjadi pilihan kita untuk menyimpan data dalam kondisi permanen dan tidak rewriteble,jika menginginkan yang rewritable mungkin bisa digunakan flash memory yang lebih efektif dan efisien. Dibawahnya lagi terdapat pita magnetic dan optical disk. Beberapa factor yang perlu diperhatikan adalah saat kita mengamati setiap level memory dari tingkatan diatas, beberapa factor mengalami perubahan, factor tersebut adalah kecepatan dari pengaksesan memory,dan kapasitas dari.
Semakin kebawah, maka waktu yang dibutuhkan untuk mengakses memory akan semakin lama, mulai dari pengaksesan register oleh cpu yang hanya membutuhkan waktu dalam skala nanosekon hingga waktu yang dibutuhkan computer untuk mengakses optical disk yang membutuhkan waktu dalam sekala detik. Parameter selanjutnya adalah parameter kapasitas dari memory itu sendiri, semakin kebawah tingkatannya maka kapasitas semakin besar, mulai dari kapasitas register yang berada pada ukuran 128 byte hingga kapasitas dari disk magnetic yang mampu hingga terabyte.
Pengertian dan Jenis Magnetic Disk
Beberapa memory yang tergolong pada magnetic disk ini sendiri adalah flopy disk, ide disk, dan scsi disk. Magnetik disk sendiri terbuah dari piringan bundar yang terbuat dari logam atau plastik dimana permukaan dari bahan tersebut mempunyai sifat magnetic sehingga nanti bisa menghasilkan semacam medan magnet yang sangat diperlukan untuk proses baca tulis dari memory tersebut karena saat proses baca/ tulis menggunakan kepala baca yang disebut dengan head. Secara fisik bentuknya adalah piringan yang bisa memutar sesuai kontrolnya. Pada awal perkembangannya piringan disk ini mempunyai ukuran diameter 50 cm, namun saat ini sudah ada yang berukuran 3 cm dan didominasi oleh ukuran 12 cm.
Cara Kerja Head Magnetic Disk
Head disk ini sendiri merupakan sebuah koil induksi yang menggantung diatas permukaan dan tertahan pada sebuah bantalan udara, kecuali pada flopy disk dimana head disk menyentuh ke permukaan. Setiap track mempunyai kepala head sendiri. Sistem kerja dari head ini adalah ketika arus + ataupun arus – melewati head, maka akan menimbulkan sebuah medan magnet yang nantinya akan menarik dari head tersebut. Head akan bergerak ke kiri atau kekanan tergantung dari polaritas arus drive tersebut.untuk membacanya, ketika head tersebut melewati sebuah daerah magnet maka sebuah arus + dan – dimunculkan dari head dan ini memungkinkan untuk membaca bit-bit yang telah disimpan sebelumnya.
Urutan melingkar bit bit ditulis ketika disk melakukan suatu putaran penuh yang disebut dengan track. Setiap track dibagi dalam sector-sektor yang memilik panjang tetap dan berisi 512 byte data. Namun didahului dengan proses sinkronisasi head sebelum menulis dan membaca. Semakin banyak data yang ditulis atau dibaca maka putarannya juga akan semakin rapat. Namun dengan kondisi seperti itu maka peluang error bacanya juga semakin tinggi. Teknologi winchester dari ibm mengantisipasi masalah celah head diatas dengan model head aerodinamik. Head berbentuk lembaran timah yang berada dipermukaan disk apabila tidak bergerak, seiring perputaran disk maka disk akan mengangkat headnya. Istilah winchester dikenalkan ibm pada model disk 3340-nya. Model ini merupakan removable disk pack dengan head yang dibungkus di dalam pack. Sekarang istilah winchester digunakan oleh sembarang disk drive yang dibungkus pack dan memakai rancangan head aerodinamis.
Semua disk mempunyai lengan yang mampu bergerak keluar masuk pada kumparan dan piringan yang berputar sehingga terbentuk jarak-jarak radial yang berbeda. Pada setiap radial yang berbeda dapat ditulis. Track track itu sendiri merupakan serangkaian lingkaran konsentrik di sekitar kumparan. Lebar sebuah track tergantung pada headnya dan seberapa akurat head tersebut ditempatkan secara radial. Data dikirim ke memori ini dalam bentuk blok, umumnya blok lebih kecil kapasitasnya daripada track. Blok – blok data disimpan dalam disk yang berukuran blok, yang disebut sector.t rack biasanya terisi beberapa sector, umumnya 10 hingga 100 sector tiap tracknya.
Block Diagram Magnetic Disc

Penjelasan Umum Magnetik Disk
• Disk adalah piringan bundar yang terbuat dari bahan tertentu (logam atau plastik)
• dengan permukaan dilapisi bahan yang dapat di magnetisasi.
• Mekanisme baca/tulis menggunakan kepala baca atau tulis yang disebut head,
• merupakan komparan pengkonduksi (conducting coil).
• Desain fisiknya, head bersifat stasioner sedangkan piringan disk berputar sesuai
• kontrolnya
• Dua metode layout data pada disk, yaitu constant angular velocity dan multiple
• zoned recording
• Disk diorganisasi dalam bentuk cincin – cincin konsentris yang disebut track
• Tiap track pada disk dipisahkan oleh gap(gap: mencegah atau mengurangi
• kesalahan pembacaan maupun penulisan yang disebabkan melesetnya head atau
• karena interferensi medan magnet)
• Sejumlah bit yang sama akan menempati track – track yang tersedia
• Semakin ke dalam disk maka kerapatan (density) disk akan bertambah besar
• Data dikirim ke memori ini dalam bentuk blok, umumnya blok lebih kecil
• kapasitasnya daripada track
• Blok – blok data disimpan dalam disk yang berukuran blok, yang disebut sector
• Track biasanya terisi beberapa sector, umumnya 10 hingga 100 sector tiap tracknya
FORMAT DATA PADA TRACK DISK
KARAKTERISTIK MAGNETIK DISK
GERAKAN HEAD
Portabilitas disk
_Disk yang tetap (non-removable disk)
_Disk yang dapat dipindah (removable disk).
_Keuntungan disk yang dapat dipindah atau
diganti – ganti adalah tidak terbatas dengan
kapasitas disk dan lebih fleksibel
MAGNETIC TAPE
Pada tahun 1950-an magnetic tape telah digunakan pertama kali oleh ibm untuk menyimpan data. Saat sebuah rol magetic tape dapat menyimpan data setara dengan 10.000 punch card, membuat magnetic tape sangat populer sebagai cara menyimpan data komputer hingga pertengahan tahun 1980-a.
Magnetic tape adalah model pertama dari pada secondary memory. Tape ini juga dipakai untuk alat input/output dimana informasi dimasukkan ke cpu dari tape dan informasi diambil dari cpu lalu disimpan pada tape lainnya.
Panjang tape pada umumnya 2400 feet, lebarnya 0.5 inch dan tebalnya 2 mm. Data disimpan dalam bintik kecil yang bermagnit dan tidak tampak pada bahan plastik yang dilapisi ferroksida. Flexible plastiknya disebut mylar. Mekanisme aksesnya adalah tape drive.
Memori perangkat yang terdiri dari panjang tipis dilapisi plastik strip dengan oksida besi; digunakan untuk merekam audio atau video atau sinyal
komputer untuk menyimpan informasi; “ia ikut bersama belasan kaset untuk merekam wawancara.
Tetapi sebagai informasi media penyimpanan, magnetic tape tidak stabil sebagai film atau kertas. Benar merawat, film dan kertas dapat nonacidic abad terakhir, sedangkan magnetic tape hanya akan berlangsung beberapa dekade. Penggunaan magnetis untuk media penyimpanan yang lebih mengecewakan oleh prevalensi beberapa format (misalnya, u-matic, vhs, s-vhs, 8mm, dan betacam untuk video), jenis media (oksida besi, kromium dioksida, barium ferrite, logam particulate dan logam evaporated), dan oleh kemajuan pesat dalam teknologi media. Di sisi lain, buku-buku yang hampir sama format dipelihara selama berabad-abad, memiliki hampir seluruhnya digunakan tinta di atas kertas sebagai media penyimpanan informasi, dan tidak memerlukan teknologi khusus untuk mengakses informasi yang direkam. Demikian juga, baru mikrofilm, microfiche, dan film film yang dikenal dengan stabilitas ketika disimpan di dalam lingkungan yang baik, dan melihat format belum berubah secara signifikan selama bertahun-tahun. (the rincian acetate backing film lama yang plagues bahan dibahas dalam pasal 2,3: substrat deformasi). Laporan ini akan membandingkan perawatan dan prosedur untuk menangani kaset dengan prosedur untuk kertas dan film bila memungkinkan.
FUNGSI MAGNETIC TAPE:
• Untuk media penyimpanan
• Untuk alat input/output
• Untuk merekam audio, video atau sinyal
CARA KERJA MAGNETIC TAPE:
• Data direkam secara digit pada media tape sebagai titik-titik magnetisasi pada lapisan ferroksida. Magnetisasi positif menyatakan 1 bit, sedangkan magnetisasi negatif menyatakan 0 bit atau sebaliknya.
SISTEM BLOCK PADA MAGNETIC
Tape:
• Data yang dibaca dari atau ditulis ke tape dalam suatu grup karakter disebut block. Suatu block adalah jumlah terkecil dari data yang dapat ditransfer antara secondary memory dan primary memory pada saat akses. Sebuah block dapat terdiri dari satu atau lebih record. Sebuah block dapat merupakan physical record.
• Diantara 2 block terdapat ruang yang kita sebut sebagai gap (inter block gap).
KEUNTUNGAN PENGGUNAAN MAGNETIC
TAPE:
• Panjang record tidak terbatas.
• Density data tinggi.
• Volume penyimpanan datanya besar dan harganya murah.
• Kecepatan transfer data tinggi.
• Sangat efisiensi bila semua atau kebanyakan record dari sebuah tape file memerlukan pemrosesan seluruhnya
KETERBATASAN MAGNETIC
TAPE:
• Akses langsung terhadap record lambat
• Masalah lingkungan
• Memerlukan penafsiran terhadap mesin
• Proses harus sequential
REEL TO REEL TAPE:
merupakan bentuk magnetic tape tertua. Alat ini mempunyai ukuran lebar 0,5 inchi dan panjangnya mencapai 2400 feet. Jika 1 feet 12 inchi, maka 2400 feet berarti 28800 inchi. Bisa dibayangkan panjangnya seperti apa. Biasanya pula mempunyai density atau tingkat kerapatan hingga 6250 bit per inchi.
Setiap reel pita magnetic terdapat dua daerah yang tidak digunakan untuk merekam data yang disebut dengan leader.
keterangan gambar:
1. Leader
2. Bot (beginning of tape) yaitu daerah penunjuk awal dari tape
3. Volume label menunjukkan identitas label
4. Header menunjukkan informasi dari suatu file
5. Data
6.trailer label menunjukkan informasi sama dengan header label
7. Eot menunjukkan data dari tape.
8. Leader
Keterangan gambar:
1. Irg(interrecord gap) pemisah record dengan lebar 0,5 – 1 inchi dan tidak dpt menyimpan data
2. Record tempat penyimpanan data
Ibg (interblock gap) yaitu pemisah kelompok record sehingga kapasitasnya lebih banyak dibanding dengan irg.
Suau magnetic tape terdapat density yang telah ditentukan. Jika semakin padat maka kapasitasnya pun akan semakin besar. Misalnya jika suatu magnetic tape dengan panjang 2400 feet dan density 6250bpi maka magnetic tape tersebut dapat menampung 180 juta byte.
Alat unyuk merekam dan membaca data di pita magnetik adalah tape drive.
Catrige tape:
catrige tape dibuat untuk menyimpan hasil dari suatu backup dari file ke disk. Banyak digunakan untuk komputer mini. Untuk memnggunkannya dibutuhkan catrige tape unit.
Casette tape:
Cassette tape banyak digunakan di komputer mikro. Selain untuk merekam lagu cassette tape dapat digunakan untuk merekam sinyall berbentuk bilangan binary. Suatu tekhinik untuk mewakili bilangan biner dicassette tape disebut dengan fsk (frequency shift keying). Untuk menggunakannya dibutuhkantape recorder biasa.
Magnetic disk
media yang digunakan pada peralatan penyimpan magnetik dilapisi dengan logam oksida, oksida ini adalah material feromagnetik, yang berarti jika ini dibiarkan pada bidang yang mengandung magnet secara permanen akan menjadi magnet.
Penggeraknya menggunakan motor untuk memutar media pada kecepatan tinggi, dan pengaksesan informasi menggunakan alat kecil yang dinamakan head.
Karakteristik fisik pack adalah jenis alat penyimpanan pada magnetic disk, yang terdiri dari beberapa tumpukan piringan alumenium.
Dalam sebuah pack/tumpukan umumnya terdiri dari 11 piringan, setiap piringan diameternya 14 inch (8 inch pada minidisk) dan menyerupai piringan hitam.
Permukaannya dilapisi dengan metal oxide film yang mengandung magnetisasi seperti pada magnetic tape. Banyaknya track pada piringan menunjukkan karakteristik penyimpanan pada lapisan permukaan, kapasitas disk drive dan mekanisme akses.
Disk mempunyai 200-800 track per permukaan (banyaknya track pada piringan adalah tetap). Pada disk pack yang terdiri dari 11 piringan mempunyai 20 permukaan untuk menyimpan data.
Kedua sisi dari setiap piringan digunakan untuk menyimpan data, kecuali pada permukaan yang paling atas dan paling bawah tidak digunakan untuk menyimpan data, karena pada bagian tersebut lebih mudah terkena kotoran/debu.
Untuk mengakses, disk pack disusun pada disk drive yang didalamnya mempunyai sebuah controller, access arm, read/write head dan mekanisme untuk rotasi pack.
Ada disk drive yang dibuat built-in dengan disk pack, sehingga disk pack ini tidak dapat dipindahkan yang disebut non removable, sedangkan disk pack yang dapat dipindahkan disebut removable.
Representasi data dan pengalamatan
data pada disk juga di block seperti data pada magnetic tape
pemanggilan sebuah block adalah banyaknya data yang diakses pada sebuah storage device.Data dari disk dipindahkan ke sebuah buffer pada main storage computer untuk diakses oleh sebuah program.
Ada 2 teknik dasar untuk pengalamatan data yang disimpan pada disk .
Metode silinder
pengalamatan berdasarkan nomor silinder, nomor permukaan dan nomor record.
Semua track dari disk pack membentuk suatu silinder
bagian nomor permukaan dari pengalamatan record menunjukkan permukaan silinder record yang disimpan.
Pengalamatan dari nomor record menunjukkan letak record pada track yang ditunjukkan dengan nomor silinder dan nomor permukaan.
Metode sektor
setiap track dari pack dibagi kedalam sektor-sektor. Setiap sektor adalah storage area untuk banyaknya karakter yang tetap. Pengalamatan recordnya berdasarkan nomor sektor, nomor track, nomor permukaan.
Setiap track pada setiap piringan mempunyai kapasitas penyimpanan yang sama meskipun diameter tracknya berlainan. Keseragaman kapasitas dicapai dengan penyesuaian density yang tepat dari representasi data untuk setiap ukuran track.
Keuntungan lain dari pendekatan keseragaman kapasitas adalah file dapat ditempatkan pada disk tanpa merubah lokasi nomor sector (track atau cylinder) pada file.
Waktu akses pada magnetic tape
seek time
waktu yang dibutuhkan untuk menggerakan read/write head pada disk ke posisi silinder yang tepat.
Head activation time
waktu yang dibutuhkan untuk menggerakan read/write head pada disk ke posisi track yang tepat.
Rotational delay (latency)
waktu yang dibutuhkan untuk perputaran piringan sampai posisi record yang tepat
Transfer time
waktu yang menunjukan kecepatan perputaran dan banyaknya data yang ditransfer
Read More

PENGERTIAN DAN PERBEDAAN ORGANISASI KOMPUTER DENGAN ARSITEKTUR KOMPUTER

PENGERTIAN DAN PERBEDAAN ORGANISASI KOMPUTER DENGAN ARSITEKTUR KOMPUTER
1. PENGERTIAN
Arsitektur Komputer mempelajari atribut-atribut sistem komputer yang terkait dengan seorang programmer. contoh: set instruksi, aritmetilka yang digunakan, teknik pengalamatan, mekanisme I/0. Sedangkan Organisasi Komputer mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen sistem komputer. contoh: sinyal kontrol, interface, teknologi memori.
2. PERBEDAAN
a) Arsitektur Komputer
Adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem komputer. Arsitektur komputer ini merupakan rencana cetak-biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya). Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll). Beberapa contoh dari arsitektur komputer ini adalah Arsitektur von Neumann, CISC, RISC, blue gene, dll.
Dalam bidang teknik komputer, arsitektur komputer adalah konsep perencanaan dan struktur pengoperasian dasar dari suatu sistem computer.Biasanya mempelajari atribut-atribut sistem komputer yang terkait dengan eksekusi logis sebuah program. Arsitektur komputer ini merupakan rencana cetak biru dan deskripsi fungsional dari kebutuhan bagian perangkat keras yang didesain (kecepatan proses dan sistem interkoneksinya).
Dalam hal ini, implementasi perencanaan dari masing–masing bagian akan lebih difokuskan terutama, mengenai bagaimana CPU akan bekerja, dan mengenai cara pengaksesan data dan alamat dari dan ke memori cache, RAM, ROM, cakram keras, dll). Beberapa contoh dari arsitektur komputer ini adalah arsitektur von Neumann, CISC, RISC, blue Gene, dan lain-lain. Arsitektur komputer juga dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya.
Arsitektur komputer ini paling tidak mengandung 3 sub kategori:
1. Set instruksi (ISA)
2. Arsitektur mikro dari ISA, dan
3. Sistem desain dari seluruh komponen dalam perangkat keras komputer ini.
b) Organisasi Komputer
Adalah bagian yang terkait erat dengan unit–unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, dan sinyal-sinyal kontrol. Arsitektur komputer lebih cenderung pada kajian atribut-atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O. Dan juga dapat didefinisikan dan dikategorikan sebagai ilmu dan sekaligus seni mengenai cara interkoneksi komponen-komponen perangkat keras untuk dapat menciptakan sebuah komputer yang memenuhi kebutuhan fungsional, kinerja, dan target biayanya.
Organisasi komputer adalah bagian yang terkait erat dengan unit-unit operasional dan interkoneksi antar komponen penyusun sistem komputer dalam merealisasikan aspek arsitekturalnya. Biasanya mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen-komponen sister komputer. Contoh aspek organisasional adalah teknologi hardware, perangkat antarmuka, teknologi memori, dan sinyal-sinyal kontrol.Arsitektur komputer lebih cenderung pada kajian atribut-atribut sistem komputer yang terkait dengan seorang programmer. Contohnya, set instruksi, aritmetika yang digunakan, teknik pengalamatan, mekanisme I/O. Sebagai contoh apakah suatu komputer perlu memiliki instruksi pengalamatan pada memori merupakan masalah rancangan arsitektural. Apakah instruksi pengalamatan tersebut akan diimplementasikan secara langsung ataukah melalui mekanisme cache adalah kajian organisasional.
Jika organisasi komputer mempelajari bagian yang terkait dengan unit-unit operasional komputer dan hubungan antara komponen sistem komputer,dan interkoneksinya yang merealisasikan spesifikasi arsitektural contoh: teknologi hardware, perangkat antarmuka (interface), teknologi memori, sistem memori, dan sinyal-sinyal control.
  • Perbedaaan Utamanya :
    Organisasi Komputer :
    Bagian yang terkait dengan erat dengan unit-unit operasional
    Contoh : teknologi hardware, perangkat antarmuka, teknologi memori, sistem memori, dan sinyal – sinyal control.
  • Arsitektur Komputer :
    Atribut-atribut sistem komputer yang terkait dengan seorang programmer
    Contoh : Set instruksi, aritmetika yang dipergunakan, teknik pengalamatan, mekanisme I/O.
Read More

Rabu, 01 Februari 2017

Cara Kerja Harddisk

Pengertian Hardisk

Hardisk merupakan piranti penyimpanan sekunder dimana data disimpan sebagai magnetik pada piringan metal yang berputar yang terintegrasi. Atau dapat diartikan dengan cakram keras. Data disimpan dalam lingkaran konsentris yang disebut track. Tiap track dibagi dalam beberapa segment yang dikenal sebagai sector. Untuk melakukan operasi baca tulis data dari dan ke piringan, harddisk menggunakan head untuk melakukannya, yang berada disetiap piringan. Head inilah yang selanjut bergerak mencari sector-sector tertentu untuk dilakukan operasi terhadapnya. Waktu yang diperlukan untuk mencari sector disebut seek time. Setelah menemukan sector yang diinginkan, maka head akan berputar untuk mencari track. Waktu yang diperlukan untuk mencari track ini dinamakan latency. Harddisk merupakan media penyimpan yang didesain untuk dapat digunakan menyimpan data dalam kapasitas yang besar. Hal ini dilatar belakangi adanya program aplikasi yang tidak memungkinkan berada dalam 1 disket dan juga membutuhkan media penyimpan berkas yang besar misalnya database suatu instansi. Tidak hanya itu, Harddisk diharapkan juga diimbangi dari kecepatan aksesnya. Kecepatan harddisk bila dibandingkan dengan disket biasa, sangat jauh. Hal ini dikarenakan harddisk mempunyai mekanisme yang berbeda dan teknologi bahan yang tentu saja lebih baik dari pada disket biasa. Data yang disimpan dalam harddisk tidak akan hilang ketika tidak diberi tegangan listrik. Dalam sebuah harddisk, biasanya terdapat lebih dari satu piringan untuk memperbesar kapasitas data yang dapat ditampung.


Komponen penyusun Harddisk


Secara umum, komponen-komponen pokok yang menyusun sebuah hard disk terdiri dari: 
  1. Spindle
    Harddisk terdiri dari spindle yang menjadi pusat putaran dari keping-keping cakram magnetik penyimpan data. Spindle ini berputar dengan cepat, oleh karena itu harus menggunakan high quality bearing.
    Dahulu harddisk menggunakan ball bearing namun kini harddisk sudah menggunakan fluid bearing. Dengan fluid bearing maka gaya friksi dan tingkat kebisingan dapat diminimalisir. Spindle ini yang menentukan putaran harddisk. Semakin cepat putaran rpm harddisk maka semakin cepat transfer datanya.
  2. Cakram Magnetik (Magnetic Disk)
    Pada cakram magnetik inilah dilakukan penyimpanan data pada harddisk. Cakram magnetikberbentuk plat tipis dengan bentuk seperti CD-R. Dalam harddisk terdapat beberapa cakram magnetik.
    Harddisk yang pertama kali dibuat, terdiri dari 50 piringan cakram magnetik dengan ukuran 0.6 meter dan berputar dengan kecepatan 1.200 rpm. Saat ini kecepatan putaran harddisk sudah mencapai 10.000rpm dengan transfer data mencapai 3.0 Gbps.
  3. Read-write Head
    Read-write Head adalah pengambil data dari cakram magnetik. Head ini melayang dengan jarak yang tipis dengan cakram magnetik. Dahulu head bersentuhan langsung dengan cakram magnetik sehingga mengakibatkan keausan pada permukaan karena gesekan. Kini antara head dan cakram magnetik sudah diberi jarak sehingga umur harddisk lebih lama.
    Read-write head terbuat bahan yang terus mengalami perkembangan, mulai dari Ferrite head, MIG (Metal-In-Gap) head, TF (Thin Film) Head, (Anisotropic) Magnetoresistive (MR/AMR) Heads, GMR (Giant Magnetoresistive) Heads dan sekarang yang digunakan adalah CMR (Colossal Magnetoresistive) Heads.
  4. Enclosure
    Enclosure adalah lapisan luar pembungkus harddisk. Enclosure berfungsi melindungi semua bagian dalam harddisk agar tidak terkena debu, kelembaban dan hal lain yang dapat mengakibatkan kerusakan data.
    Dalam enclosure terdapat breath filter yang membuat harddisk tidak kedap udara, hal ini bertujuan untuk membuang panas yang ada didalam harddisk karena proses putaran spindle dan pembacaan Read-write head.
  5. Interfacing Module
    Interfacing modul berupa seperangkat rangkaian elektronik yang mengendalikan kerja bagian dalam harddisk, memproses data dari head dan menghasilkan data yang siap dibaca oleh proses selanjutnya. Interfacing modul yang dahulu banyak dipakai adalah sistem IDE (Integrated Drive Electronics) dengan sistem ATA yang mempunyai koneksi 40 pin.
    Teknologi terbaru dari interfacing module adalah teknologi Serial ATA (SATA). Dengan SATAmaka satu harddisk ditangani oleh satu bus tersendiri didalam chipset, sehingga penanganannya menjadi lebih cepat dan efisien. Harddisk SATA sekarang perlahan sudah menggantikan harddisk ATA yang makin lama mulai hilang dari pasaran.
  6. Sector & Tracks
    Tracks adalah bagian dari sepanjanjang keliling lingkaran dari luar sampai ke dalam.Sedangkan sector adalah bagian dari tracks.Sectors memiliki jumlah bytes yang sudah diatur. Ada ribuan sector dalam HD.


    Cara Kerja Harddisk :

    1.       Dilakukan pengaksesan terhadap harddisk untuk melihat dan menentukan di lokasi sebelah mana informasi yang dibutuhkan ada di dalam ruang harddisk.
    2.       Pada proses ini, aplikasi yang kita jalankan, Sistem operasi, sistem BIOS, dan juga driver-driver khusus (tergantung pada aplikasi yang kita jalankan) bekerja bersama-sama, untuk menentukan bagian mana dari harddisk yang harus dibaca.
    3.       Harddisk akan bekerja dan memberikan informasi di mana data/informasi yang dibutuhkan tersedia, sampai kemudian menyatakan, “Informasi yang ada di track sekian sektor sekianlah yang kita butuhkan.” Nah pola penyajian informasi yang diberikan oleh harddisk sendiri biasanya mengikuti pola geometris.
    4.       Yang dimaksud dengan pola geometris di sini adalah sebuah pola penyajian informasi yang menggunakan istilah silinder, track, dan sector. Ketika informasi ditemukan, akan ada permintaan supaya mengirimkan informasi tersebut melalui interface harddisk untuk memberikan alamat yang tepat (sektor berapa, track berapa, silinder mana) dan setelah itu informasi/data pada sector tersebut siap dibaca.
    5.       Pengendali program yang ada pada harddisk akan mengecek untuk memastikan apakah informasi yang diminta sudah tersedia pada internal buffer yang dimiliki oleh harddisk (biasanya disebut cache atau buffer).
    6.       Bila sudah oke, pengendali ini akan menyuplai informasi tersebut secara langsung, tanpa harus melihat lagi ke permukaan pelat itu karena seluruh informasi yang dibutuhkan sudah dihidangkan di dalam buffer.
    7.       Dalam banyak kejadian, harddisk pada umumnya tetap berputar ketika proses di atas berlangsung. Namun ada kalanya juga tidak, lantaran manajemen power pada harddisk memerintahkan kepada disk untuk tidak berputar dalam rangka penghematan energi. Papan pengendali yang ada di dalam harddisk menerjemahkan instruksi tentang alamat data yang diminta dan selama proses itu berlangsung, ia akan senantiasa siaga untuk memastikan pada silinder dan track mana informasi yang dibutuhkan itu tersimpan.
    8.       Nah, papan pengendali ini pulalah yang kemudian meminta actuator untuk menggerakkan head menuju ke lokasi yang dimaksud. Ketika head sudah berada pada lokasi yang tepat, pengendali akan mengaktifkan head tersebut untuk melakukan proses pembacaan. Mulailah head membaca track demi track untuk mencari sektor yang diminta. Proses inilah yang memakan waktu, sampai kemudian head menemukan sektor yang tepat dan kemudian siap membacakan data/informasi yang terkandung di dalamnya.
    9.       Papan pengendali akan mengkoordinasikan aliran informasi dari harddisk menuju ke ruang simpan sementara (buffer, cache). Informasi ini kemudian dikirimkan melalui interface harddisk menuju sistem memori utama untuk kemudian dieksekusi sesuai dengan aplikasi atau perintah yang kita jalankan.

    BadSector
    Hardisk terdiri dari beberapa sector. Bad sector berarti ada sebagian sector di hardisk yang rusak. Akibatnya bisa bikin error hardisknya dan kehilangan data. Bad sector penyebabnya ada 2 yaitu bad secara software dan hardware. Kalau secara software masih bisa di sembuhkan dengan bantuan software repair tapi kalau secara hardware dimana piringan hardisknya ada baret maka susah untuk di sembuhkan biasanya hanya dipotong bagian yang bad sector
    Tanda2 HDD yg sudah bad sector ada banyak masalah, diantaranya : 
    1. PC suka ngehang pada waktu menjalankan apilikasi2 (game, atau program lainnya)
    2. dari HDD nya ada suara2 yg gak wajar
    3. data2 yg kita simpan bisa hilang
    4. kalo sudah kronis, HDD nya tewas.

    Penyebab utama Bad Sector : 
    1. PSU abal2 yg ga mampu memberi daya yg cukup atau daya yg continous pada HDD.
    2. Komputer sering tidak ter-shutdown dgn benar, akibatnya HDD yg sedang bekerja platter tidak “terparkir” dengan baik. Penyebabnya tanya aja sama PLN. Untuk lebih aman pake UPS biar msh ada cadangan daya yg cukup buat shutdown komputer dgn benar.
    3. Masih berhubungan dgn PLN juga, tentang voltage yg ga stabil, suka tiba2 drop.
Read More

Harddisk

Harddisk
Harddisk adalah salah satu komponen komputer yang berfungsi sebagai tempat penyimpan data. Harddisk yang terpasang di dalam komputer/ laptop disebut HDD internal dan harddisk yang berada diluar disebut HDD Eksternal.

Dari tahun ke tahun Harddisk mengalami perkembangan yang signifikan baik besarnya kapasitas penyimpanan dan teknologi yang digunakan pada harddisk tersebut. Harddisk menggunakan media penyimpanan berbentuk piringan cakram dan sampai saat ini masih digunakan. Namun ada harddisk terbaru tanpa menggunakan cakram yaitu SSD (Solid State Drive).

Bicara mengenai Harddisk, berikut ini Teknologivirtual akan menjelaskan macam-macam harddisk komputer yang ada sampai saat ini. Setidaknya ada 5 macam harddisk, mulai dari yang jadul sampai yang paling baru. Berikut penjelasannya.

Macam-Macam Harddisk Komputer/ Laptop:

1. Harddisk ATA (Advance Technology Attachment)
AT Attachment (ATA) adalah antarmuka standar untuk menghubungkan peranti penyimpanan seperti hard disk, drive CD-ROM, atau DVD-ROM di komputer. ATA singkatan dari Advance Technology Attachment. Standar ATA dikelola oleh komite yang bernama X3/ INCITS T13. ATA juga memiliki beberapa nama lain, seperti IDE dan ATAPI. Karena diperkenalkannya versi terbaru dari ATA yang bernama Serial ATA, versi ATA ini kemudian dinamai Parallel ATA (PATA) untuk membedakannya dengan versi Serial ATA yang baru.

Parallel ATA hanya memungkinkan panjang kabel maksimal hanya 18 inchi (46 cm) walaupun banyak juga produk yang tersedia di pasaran yang memiliki panjang hingga 36 inchi (91 cm). Karena jaraknya pendek, PATA hanya cocok digunakan di dalam komputer saja. PATA sangat murah dan lazim ditemui di komputer.Nama standar ini awalnya adalah PC/ AT Attachment. Fitur utamanya adalah bisa mengakomodasi koneksi langsung ke ISA BUS 16-bit sehingga dinamai AT Bus. Nama ini kemudian disingkat menjadi AT Attachment untuk mengatasi masalah hak cipta.

2. Harddisk SATA (Serial Advance Technology Attachment)
SATA adalah pengembangan dari ATA. SATA didefinisikan sebagai teknologi yang didesain untuk menggantikan ATA secara total. Adapter dari serial ATA mampu mengakomodasi transfer data dengan kecepatan yang lebih tinggi dibandingkan dengan ATA sederhana. Antarmuka SATA generasi pertama dikenal dengan nama SATA/ 150 atau sering juga disebut sebagai SATA 1. SATA 1 berkomunikasi dengan kecepatan 1,5 GB/s.


Kecepatan transfer uncoded-nya adalah 1,2 GB/s. SATA/ 150 memiliki kecepatan yang hampir sama dengan PATA/ 133, namun versi terbaru SATA memiliki banyak kelebihan (misalnya native command queuing) yang menyebabkannya memiliki kecepatan lebih dan kemampuan untuk melakukan bekerja di lingkungan multitask.

Di awal periode SATA/150, para pembuat adapter dan drive menggunakan bridge chip untuk mengonversi desain yang ada dengan antarmuka PATA. Peranti bridge memiliki konektor SATA dan memiliki beberapa konektor daya. Secara perlahan-lahan, produk bridge mengakomodasi native SATA. Saat ini kecepatan SATA adalah 3GB/s dan para ahli sekarang sedang mendesain teknologi untuk SATA 6GB/s.

3. Harddisk SCSI (Small Computer System Interface)
SCSI (Small Computer System Interface) dibaca Skasi adalah standar yang dibuat untuk keperluan transfer data antara komputer dan periferal lainnya. Standar SCSI mendefinisikan perintah-perintah, protokol dan antarmuka elektrik dan optik yang diperlukan. SCSI menawarkan kecepatan transfer data yang paling tinggi di antara standar yang lainnya.


Penggunaan SCSI paling banyak terdapat di hard disk dan tape drive. Namun, SCSI juga terdapat pada scanner, printer, dan peranti optik (DVD, CD, dan lainnya). Standar SCSI digolongkan sebagai standar yang device independent sehingga secara teoritis SCSI bisa diterapkan di semua tipe hardware.

Berdasarkan tingkat kecepatan putarannya, hard disk jenis IDE memiliki kecepatan putaran 5.400 rpm dan 7.200 rpm. Sedangkan hard disk SCSI mampu berputar antara 10.000 s.d. 12.000 rpm. Tingkat kecepatan putaran piringan hard disk diukur dalam satuan RPM (rotation per minute/putaran per menit). Semakin cepat putaran hard disk, maka jumlah data yang dapat dibaca oleh head semakin banyak. Demikian pula sebaliknya. Beberapa merek hard disk yang banyak digunakan, antara lain Western Digital (WDC), Quantum, Seagate, Maxtor, Samsung, IBM, Toshiba, dan Hitachi.

4. Harddisk SSD (Solid State Disk)
SSD singkatan dari Solid State Drive atau Solid State Disk, adalah perangkat penyimpan data yang menggunakan serangkaian IC sebagai memori yang digunakan untuk menyimpan data atau informasi. Sebagai analogi, kita mungkin tidak asing lagi dengan USB Flash Drive atau USB Thumb Drive atau USB memory stick. Sebuah alat elektronik yang kita gunakan untuk menyiman data, yang sering kita bawa ke mana-mana, yang dicolokkan pada terminal USB komputer saat ingin mengambil atau menyimpan data.


SSD bisa dianggap sebagai versi canggih dari USB Flash drive dengan kapasitas yang jauh lebih besar dan berfungsi sebagai pengganti Hardisk yang selama ini digunakan pada perangkat komputer.
Jadi SSD adalah perangkat elektronik yang berfungsi menyimpan data seperti hardisk (HDD: Hard Disk Drive) namun konstruksinya seperti USB Flash Drive, yang tersusun dari beberapa IC sebagai memori.

Seperti halnya USB Flash Drive, SSD pun tidak memiliki komponen yang bergerak di dalamnya. Data atau informasi hanya disimpan di dalam microchips. Berbeda dengan Hardisk yang memiliki lengan mekanik yang bergerak ke sana ke mari untuk menulis dan membaca data di atas piringan magnetik. Perbedaan ini membuat SSD bekerja jauh lebih cepat dari pada Hardisk. Hardisk (HDD) bergerak secara mekanik untuk mangambil dan menyimpan data atau Informasi, sedangkan SSD bergerak secara elektrik untuk menyimpan dan mengambil data atau informasi. Tentu SSD bekerja lebih cepat dibandingkan dengan HDD.

5. Harddisk SSHD (Solid State Hibrida)
SSHD merupakan sebuah teknologi baru media penyimpanan data komputer. SSHD memiliki banyak sekali keunggulan, dengan menggabungkan kelebihan dari harddisk dan kelebihan dari SSD dalam satu perangkat. Kecepatan transfer data yang cepat seperti SSD dan kapasitas penyimpanan data yang besar seperti HDD adalah salah satu keunggulan utama yang dimiliki oleh SSHD ini.


Solid State Hybrid Drive atau SSHD adalah sebuah media penyimpanan yang merupakan gabungan (hybrid) antara teknologi SSD dan HDD. Salah satu keunggulan yang dimiliki oleh SSHD ini adalah pada proses boot-time yang lebih cepat dibandingkan HDD. Kenapa ini bisa terjadi ? Karena Disk Buffer yang dimiliki oleh SSHD ini menggunakan chip NAND seperti pada SSD.


Fungsi SSHD memiliki fungsi yang sama seperti HDD dan SSD sebagai media penyimpanan data pada komputer atau laptop. Dengan menggunakan SSHD ini diharapkan komputer anda memiliki kecepatan yang lebih baik dibandingkan saat menggunakan HDD sebagai media penyimpanan datanya. SSHD memang merupakan teknologi baru media penyimpanan data. Perusahaan ternama Seagate telah mengeluarkan SSHD for laptop dan desktop dengan kapasitas 500 GB, 1TB, dan 2TB. Harga SSHD lebih tinggi dibandingkan SSHD dan lebih murah dibandingkan SSD.

Seagate SSHD memadukan kecepatan luar biasa hard disk solid state (SSD) dengan kapasitas hard disk yang tinggi untuk mendongkrak kinerja sistem Anda. Diberdayakan oleh teknologi Adaptive Memory™, teknologi SSHD memungkinkan sistem Anda melakukan booting, memuat, dan menjalankan aplikasi dengan lebih cepat. Lakukan lebih banyak hal dan hemat waktu dengan SSHD untuk PC laptop atau desktop Anda
Read More

RAID (Redundant Array of Independent)

definisi dan penjelasan lengkap tentang raid redundant

A. Pengertian RAID

            RAID, singkatan dari Redundant Array of Independent Disk merujuk kepada sebuah teknologi di dalam penyimpanan data komputer yang digunakan untuk mengimplementasikan fitur toleransi kesalahan pada media penyimpanan komputer (terutama hard disk) dengan menggunakan cara redundansi (penumpukan) data, baik itu dengan menggunakan perangkat lunak, maupun unit perangkat keras RAID terpisah. 

Kata “RAID” juga memiliki beberapa singkatan Redundant Array of Inexpensive Disks, Redundant Array of Independent Drives, dan juga Redundant Array of Inexpensive Drives. Teknologi ini membagi atau mereplikasi data ke dalam beberapa hard disk terpisah. RAID didesain untuk meningkatkan keandalan data dan meningkatkan kinerja I/O dari hard disk.

RAID merupakan organisasi disk memori yang mampu menangani beberapa disk dengan sistem akses paralel dan redudansi ditambahkan untuk meningkatkan reliabilitas. Kerja paralel ini menghasilkan resultan kecepatan disk yang lebih cepat.

B. Konsep RAID

           Sejak pertama kali diperkenalkan, RAID dibagi ke dalam beberapa skema, yang disebut dengan “RAID Level“. Pada awalnya, ada lima buah RAID level yang pertama kali dikonsepkan, tetapi seiring dengan waktu, level-level tersebut berevolusi, yakni dengan menggabungkan beberapa level yang berbeda dan juga mengimplementasikan beberapa level proprietary yang tidak menjadi standar RAID.

RAID menggabungkan beberapa hard disk fisik ke dalam sebuah unit logis penyimpanan, dengan menggunakan perangkat lunak atau perangkat keras khusus. Solusi perangkat keras umumnya didesain untuk mendukung penggunaan beberapa hard disk secara sekaligus, dan sistem operasi tidak perlu mengetahui bagaimana cara kerja skema RAID tersebut. Sementara itu, solusi perangkat lunak umumnya diimplementasikan di dalam level sistem operasi, dan tentu saja menjadikan beberapa hard disk menjadi sebuah kesatuan logis yang digunakan untuk melakukan penyimpanan.

Ada beberapa konsep kunci di dalam RAID: mirroring (penyalinan data ke lebih dari satu buah hard disk), striping (pemecahan data ke beberapa hard disk) dan juga koreksi kesalahan, di mana redundansi data disimpan untuk mengizinkan kesalahan dan masalah untuk dapat dideteksi dan mungkin dikoreksi (lebih umum disebut sebagai teknik fault tolerance/toleransi kesalahan).

Level-level RAID yang berbeda tersebut menggunakan salah satu atau beberapa teknik yang disebutkan di atas, tergantung dari kebutuhan sistem. Tujuan utama penggunaan RAID adalah untuk meningkatkan keandalan/reliabilitas yang sangat penting untuk melindungi informasi yang sangat kritis untuk beberapa lahan bisnis, seperti halnya basis data, atau bahkan meningkatkan kinerja, yang sangat penting untuk beberapa pekerjaan, seperti halnya untuk menyajikan video on demand ke banyak penonton secara sekaligus.

Konfigurasi RAID yang berbeda-beda akan memiliki pengaruh yang berbeda pula pada keandalan dan juga kinerja. Masalah yang mungkin terjadi saat menggunakan banyak disk adalah salah satunya akan mengalami kesalahan, tapi dengan menggunakan teknik pengecekan kesalahan, sistem komputer secara keseluruhan dibuat lebih andal dengan melakukan reparasi terhadap kesalahan tersebut dan akhirnya “selamat” dari kerusakan yang fatal.

Teknik mirroring dapat meningkatkan proses pembacaan data mengingat sebuah sistem yang menggunakannya mampu membaca data dari dua disk atau lebih, tapi saat untuk menulis kinerjanya akan lebih buruk, karena memang data yang sama akan dituliskan pada beberapa hard disk yang tergabung ke dalam larik tersebut.

Teknik striping, bisa meningkatkan performa, yang mengizinkan sekumpulan data dibaca dari beberapa hard disk secara sekaligus pada satu waktu, akan tetapi bila satu hard disk mengalami kegagalan, maka keseluruhan hard disk akan mengalami inkonsistensi. 

Teknik pengecekan kesalahan / koreksi kesalahan juga pada umumnya akan menurunkan kinerja sistem, karena data harus dibaca dari beberapa tempat dan juga harus dibandingkan dengan checksum yang ada. Maka, desain sistem RAID harus mempertimbangkan kebutuhan sistem secara keseluruhan, sehingga perencanaan dan pengetahuan yang baik dari seorang administrator jaringan sangatlah dibutuhkan. Larik-larik RAID modern umumnya menyediakan fasilitas bagi para penggunanya untuk memilih konfigurasi yang diinginkan dan tentunya sesuai dengan kebutuhan.

Beberapa sistem RAID dapat didesain untuk terus berjalan, meskipun terjadi kegagalan. Beberapa hard disk yang mengalami kegagalan tersebut dapat diganti saat sistem menyala (hot-swap) dan data dapat diperbaiki secara otomatis. Sistem lainnya mungkin mengharuskan shutdown ketika data sedang diperbaiki. Karenanya, RAID sering digunakan dalam sistem-sistem yang harus selalu on-line, yang selalu tersedia (highly available), dengan waktu down-time yang, sebisa mungkin, hanya beberapa saat saja.

C. Struktur RAID

          Disk memiliki resiko untuk mengalami kerusakan. Kerusakan ini dapat berakibat turunnya kinerja atau pun hilangnya data. Meski pun terdapat backup data, tetap saja ada kemungkinan data yang hilang karena adanya perubahan setelah terakhir kali data di-backup. Karenanya reliabilitas dari suatu disk harus dapat terus ditingkatkan.

Berbagai macam cara dilakukan untuk meningkatkan kinerja dan juga reliabilitas dari disk. Biasanya untuk meningkatkan kinerja, dilibatkan banyak disk sebagai satu unit penyimpanan. Tiap-tiap blok data dipecah ke dalam beberapa subblok, dan dibagi-bagi ke dalam disk-disk tersebut. Ketika mengirim data disk-disk tersebut bekerja secara paralel, sehingga dapat meningkatkan kecepatan transfer dalam membaca atau menulis data. Ditambah dengan sinkronisasi pada rotasi masing-masing disk, maka kinerja dari disk dapat ditingkatkan. Cara ini dikenal sebagai RAID. Selain masalah kinerja RAID juga dapat meningkatkan realibilitas dari disk dengan jalan melakukan redundansi data.

 Tiga karakteristik umum dari RAID ini, yaitu :
  1. RAID adalah sekumpulan disk drive yang dianggap sebagai sistem tunggal disk.
  2. Data didistribusikan ke drive fisik array.
  3. Kapasitas redunant disk digunakan untuk menyimpan informasi paritas, yang menjamin recoveribility data ketika terjadi masalah atau kegagalan disk.

Jadi, RAID merupakan salah satu jawaban masalah kesenjangan kecepatan disk memori dengan CPU dengan cara menggantikan disk berkapasitas besar dengan sejumlah disk-disk berkapasitas kecil dan mendistribusikan data pada disk-disk tersebut sedemikian rupa sehingga nantinya dapat dibaca kembali.

D. Level RAID

        RAID dapat dibagi menjadi 8 level yang berbeda, yaitu level 0, level 1, level 2, level 3, level 4, level 5, level 6, level 0+1 dan 1+0. Setiap level tersebut memiliki kelebihan dan kekurangannya. : 

definisi dan penjelasan lengkap tentang raid redundant

1. RAID level 0
    RAID level 0 menggunakan kumpulan disk dengan striping pada level blok, tanpa redundansi. Jadi hanya menyimpan melakukan striping blok data ke dalam beberapa disk. Level ini sebenarnya tidak termasuk ke dalam kelompok RAID karena tidak menggunakan redundansi untuk peningkatan kinerjanya.

definisi dan penjelasan lengkap tentang raid redundant

2. RAID level 1

    RAID level 1 ini merupakan disk mirroring, menduplikat setiap disk. Cara ini dapat meningkatkan kinerja disk, tetapi jumlah disk yang dibutuhkan menjadi dua kali lipat, sehingga biayanya menjadi sangat mahal. Pada level 1 (disk duplexing dan disk mirroring) data pada suatu partisi hard disk disalin ke sebuah partisi di hard disk yang lain sehingga bila salah satu rusak , masih tersedia salinannya di partisi mirror.

definisi dan penjelasan lengkap tentang raid redundant

3. RAID level 2

    RAID level 2 ini merupakan pengorganisasian dengan error-correcting-code (ECC). Seperti pada memori di mana pendeteksian terjadinya error menggunakan paritas bit. Setiap byte data mempunyai sebuah paritas bit yang bersesuaian yang merepresentasikan jumlah bit di dalam byte data tersebut di mana paritas bit=0 jika jumlah bit genap atau paritas=1 jika ganjil. Jadi, jika salah satu bit pada data berubah, paritas berubah dan tidak sesuai dengan paritas bit yang tersimpan. Dengan demikian, apabila terjadi kegagalan pada salah satu disk, data dapat dibentuk kembali dengan membaca error-correction bit pada disk lain.

definisi dan penjelasan lengkap tentang raid redundant

4. RAID level 3
   RAID level 3 merupakan pengorganisasian dengan paritas bit interleaved. Pengorganisasian ini hampir sama dengan RAID level 2, perbedaannya adalah RAID level 3 ini hanya memerlukan sebuah disk redundan, berapapun jumlah kumpulan disk-nya. Jadi tidak menggunakan ECC, melainkan hanya menggunakan sebuah bit paritas untuk sekumpulan bit yang mempunyai posisi yang sama pada setiap disk yang berisi data. Selain itu juga menggunakan data striping dan mengakses disk-disk secara paralel.

definisi dan penjelasan lengkap tentang raid redundant

5. RAID level 4
    RAID level 4 merupakan pengorganisasian dengan paritas blok interleaved, yaitu menggunakan striping data pada level blok, menyimpan sebuah paritas blok pada sebuah disk yang terpisah untuk setiap blok data pada disk-disk lain yang bersesuaian. Jika sebuah disk gagal, blok paritas tersebut dapat digunakan untuk membentuk kembali blok-blok data pada disk yang gagal tadi. Kecepatan transfer untuk membaca data tinggi, karena setiap disk-disk data dapat diakses secara paralel. Demikian juga dengan penulisan, karena disk data dan paritas dapat ditulis secara paralel.
definisi dan penjelasan lengkap tentang raid redundant
 6. RAID level 5
   RAID level 5 merupakan pengorganisasian dengan paritas blok interleaved tersebar. Data dan paritas disebar pada semua disk termasuk sebuah disk tambahan. Pada setiap blok, salah satu dari disk menyimpan paritas dan disk yang lainnya menyimpan data. Sebagai contoh, jika terdapat kumpulan dari 5 disk, paritas blok ke n akan disimpan pada disk (n mod 5) + 1; blok ke n dari empat disk yang lain menyimpan data yang sebenarnya dari blok tersebut. Sebuah paritas blok tidak menyimpan paritas untuk blok data pada disk yang sama, karena kegagalan sebuah disk akan menyebabkan data hilang bersama dengan paritasnya dan data tersebut tidak dapat diperbaiki. Penyebaran paritas pada setiap disk ini menghindari penggunaan berlebihan dari sebuah paritas disk seperti pada RAID level 4.

definisi dan penjelasan lengkap tentang raid redundant

7. RAID level 6
   RAID level 6 disebut juga redundansi P+Q, seperti RAID level 5, tetapi menyimpan informasi redundan tambahan untuk mengantisipasi kegagalan dari beberapa disk sekaligus. RAID level 6 melakukan dua perhitungan paritas yang berbeda, kemudian disimpan di dalam blok-blok yang terpisah pada disk-disk yang berbeda. Jadi, jika disk data yang digunakan sebanyak n buah disk, maka jumlah disk yang dibutuhkan untuk RAID level 6 ini adalah n+2 disk. Keuntungan dari RAID level 6 ini adalah kehandalan data yang sangat tinggi, karena untuk menyebabkan data hilang, kegagalan harus terjadi pada tiga buah disk dalam interval rata-rata untuk perbaikan data (Mean Time To Repair atau MTTR). Kerugiannya yaitu penalti waktu pada saat penulisan data, karena setiap penulisan yang dilakukan akan mempengaruhi dua buah paritas blok.

definisi dan penjelasan lengkap tentang raid redundant definisi dan penjelasan lengkap tentang raid redundant
8. RAID level 0+1 dan 1+0
    RAID level 0+1 dan 1+0 ini merupakan kombinasi dari RAID level 0 dan 1. RAID level 0 memiliki kinerja yang baik, sedangkan RAID level 1 memiliki kehandalan. Namun, dalam kenyataannya kedua hal ini sama pentingnya. Dalam RAID 0+1, sekumpulan disk di-strip, kemudian strip tersebut di-mirror ke disk-disk yang lain, menghasilkan strip-strip data yang sama.
    Kombinasi lainnya yaitu RAID 1+0, di mana disk-disk di-mirror secara berpasangan, dan kemudian hasil pasangan mirrornya di-strip. RAID 1+0 ini mempunyai keuntungan lebih dibandingkan dengan RAID 0+1. Sebagai contoh, jika sebuah disk gagal pada RAID 0+1, seluruh strip-nya tidak dapat diakses, hanya sebagian strip saja yang dapat diakses, sedangkan pada RAID 1+0, disk yang gagal tersebut tidak dapat diakses, tetapi pasangan mirror-nya masih dapat diakses, yaitu disk-disk selain dari disk yang gagal.
Read More